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SUMMARY 
Some finite element approximations of incompressible flows, such as those obtained with the bilinear 
velocity-constant pressure element (Ql-P,,), are well known to be unstable in pressure while providing 
reasonable results for the velocity. 

We shall see that there exists a subspace of piecewise constant pressures that leads to a stable 
approximation. The main drawback associated with this subspace is the necessity of assembling groups of 
elements, the so-called macro-elements', which increases dramatically the bandwidth of the system. 

We study a variant of Uzawa's method which enables us to work in the desired subspace without 
increasing the bandwidth of the system. Numerical results show that this method is efficient and can be made 
to work at a low extra cost. The method can easily be generalized to other problems and is very attractive in 
three-dimensional cases. 
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1. INTRODUCTION 

Finite element methods using isoparametric triangular or quadrilateral elements are now widely 
used to approximate incompressible materials. However, in order to get stable and accurate 
results, the approximation spaces have to satisfy the well known inf-sup (or BabuSka-Brezzi) 
condition. It is surprising to realize, however, that one of the most popular choices of element, 
namely the bilinear velocity-constant pressure element (Q l-Po), does not satisfy this stability 
condition. In fact, this element is still defeating the efforts for a general proof of convergence, 
although numerical evidence suggests that velocity and some filtered pressure do often converge. 
Results from Pitkaranta and Stenberg' and Brezzi and Fortin' prove convergence on special 
meshes. 

In this paper we present a variant of Uzawa's method which enables us to relate theory and 
practice by permitting us to obtain good computed velocities and pressure. To do this we use a 
projection on a well chosen pressure subspace, where pressure is free of any spurious mode.3 This 
subspace was first considered in Johnson and Pitkaranta4 where it was used to prove a 
convergence result on a regular mesh. We consider it here in a more general setting. 

We shall restrict our attention to the Stokes problem and the bidimensional Q1-Po element, but 
the method can be extended to other elements and to 3D problems, where the low number of 
degrees of freedom of the Ql-Po element makes it attractive. 
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2. NOTATION AND PRELIMINARY RESULTS 

Let 0 be a polygonal domain in R2, with boundary r = aQ. The stationary Stokes equations for an 
incompressible viscous fluid can be written as 

- vAu + grad p = f, 
P 

div u = g, gdx=O, 

u,r =o, 
where u is the fluid velocity, p is the pressure, f is the body force and v > 0 is the kinematic viscosity. 
We have introduced a general condition div u =g. Such a g is often implicitly defined by a non- 
homogeneous boundary condition. We shall, without loss of generality, let v =  1. 

We denote I - J s , R  and 1) * I l s , R  respectively the semi-norm and norm of the Sobolev space (Hs(R))n, 
where s and n are integers. As usual, H#2) denotes the subspace of H’(Q) consisting of functions 
with vanishing trace on r. We also introduce the following functional space: 

Defining the bilinear forms a(.;) and b(.,.) by 

a(u, v) = grad u : grad v dx, s. 
s. b(v, q )  = - q div v dx, 

problem (1) can be formulated variationally as 

U(U, V) + b(v, p) = f .v  dx, VV E (H#2))n, u E(H;(R))”, (2) 

b(u, 4 )  = (9, q),  vq E L2(Q), P E L a w  (3) 

1. 
These equations are in fact the optimality conditions of the following Lagrangian: 

9(v ,q)=!u(v ,v)+b(v ,q) -~Rf .v  d x - 1  R gq dx. (4) 

To b(v,q) we associate the linear operators B =  -div and B‘= +grad defined by 

(Bv, 4 )  = 0 ,  B‘q) = b(v, 41, vv E (HA(Q))n, q E L2 (0). 

We will have to study the subspace kerB=(vE(Hi(Q))”l divv=O}. As to kerB‘, it evidently 
consists of constant functions. 

Considering a finite element triangulation q, of R into quadrilaterals, we introduce the finite 
dimensional subspaces vh c (H$(Q))” and Qh c LZ(O) defined by 

vh= (VE(HA(Q))2 I VlKE(Q1(K))2, V K  E Z h } ,  

Qh={PEL2(a) IPIKEPcI(K), V K E T h } ,  

where Q , ( K )  is the space of (isoparametrically) transformed bilinear functions5 and P,(K)  is the 
space of piecewise constant functions. We shall frequently refer to this discretization as the Q1-Po 
discretization. 
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On these spaces, we formulate the approximate problem as: find uh in vh and Ph in Qh such that 

b(uh,qh)=(gh,qh), VqhEQh. (6) 
Here again we define the operators Bh and BI, by 

( B h V h , q h ) = ( V h , B : q h ) = b ( v h ,  qh), vvhE vh, qhE Qh, 

and the subspaces ker Bh = { vh E vh 1 Bhvh = 0 )  and, 

ker B;= { qh E Qh I &qh=O). 

From Brezzi,6 stability of such a finite element approximation requires that the following 
inf-sup condition be satisfied for a constant k independent of h: 

The quotient norm on Qh appears because pressure is defined up to an additive constant in 
problem (5),(6). Condition (7) means implicitly that the pressure must also be defined up to an 
additive constant in the finite dimensional case. This is not straightforward, however. 

Stability of finite element approximations of incompressible materials (as defined by condition 
(7)) is related to the properties of the discrete divergence operator and its transpose. Usually, this 
operator is not the restriction of B to Qh. In fact, Bhuh is the projection of Buh on the space Qh; this is 
the case for the Q,-Po element just introduced, where Bh is the average divergence on each 
element. System (5),  (6) is singular and the pressure is determined only up to an additive constant 
for any reasonable approximation. This also implies that we have a compatibility condition on 
data. When a non-homogeneous Dirichlet problem is considered, this is nothing but the obvious 
global balance of mass 

janu*nds=O. 

In some discretizations, the kernel of the discrete gradient operator is more than one- 
dimensional. This is the case for the Q,-Po approximation on a rectangular mesh where we have 
an extra pressure mode in the famous checkerboard pattern. Besides requiring some filtering of 
pressure, this also means that an extra compatibility condition has to be imposed on data. This 
extra condition has no physical meaning and thus imposes an artificial constraint on data. 

A typical example of this is the driven cavity problem, discretized with a regular mesh of 
rectangular Q,-Po elements. In the case of a ‘flow-through’ cavity, that is, with equal velocity at 
each node on the driven side (Figure l(a)), the problem is well posed but will require a filtering of 
the pressure. In the more difficult case of a ‘contained’ flow in a cavity, that is, a cavity with zero 
velocity at each corner node and constant velocity on the driven side (Figure l(b)), the problem is 
well posed for an odd number of elements on the driven side (provided that the first and last 
elements on the driven side have same length) but is ill-posedfor an even number ofelements on this 
side.3 

We shall now see how reducing the space of discrete pressures can lead to a stable 
approximation. We shall then relate this fact to convergence results for the original Q1 -Po 
element. Finally, we shall introduce our iterative method. 
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u=o, v=l. 

0 u=o, v=o. 

Figure 1. Boundary conditions (a) flow-through and (b) contained flow in a cavity 

3. MACRO-ELEMENT TECHNIQUES AND THE Q,-P,  ELEMENT 

As we have already noted in the previous sections, a complete analysis of the Q1-Po element is still 
not available, even after 15 years of effort. Partial results have nevertheless been found and we shall 
review those that will be relevant to the numerical method we want to introduce. A fundamental 
tool will be the notion of composite element or macro-element. We define this (see e.g. Reference 7) 
as a patch M of elements following a well defined pattern, i.e. that can be transformed 
continuously into a reference configuration Q. In the following we shall consider specially a 
macro-element M built of four arbitrary quadrilaterals as in Figure 2 and we shall suppose that 
our finite element mesh is built of such macro-elements. In practice, this is not a very strong 
restriction. 

In a first step we define a subspace 0, c Qh such that the discrete problem in v,, x &h is stable. To 
do so we define4 an orthogonal basis of Qh using the macro-element M .  Let Ai denote the area of 
element K i  of M .  We take # j ,  to be the piecewise constant functions schematized in Figure 3. 

Then we define 

A checkerboard mode will obviously take its roots in Q“h. It is also clear, by construction, that o h  

and oh are orthogonal with respect to the L’(S2) scalar product. We thus define 

M 
h 

M 

Figure 2. A macro-element M and its reference $ 
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where 

(b) 42.M (c) $3,  M 

Figure 3. Pressure basis on M 

and p Q h p h  = ( I  -‘Qk)ph = p h  - a4, M ( P l 1 ) 4 4 ,  M .  
M 

Let us now consider a new element defined on M by using v h  as the space of velocities and Q^h for 
pressure. On the macro-element considered there is exactly the same number of degrees of freedom 
as the Q2-PI element and a stability proof can be given.8 There is no advantage in using explicitly 
this element, however, since we only get O(h) convergence for a bandwidth and general complexity 
similar to that of the Q2-P, case. Degrees of freedom of this new element, which we denote Q1-Po, 
are schematically represented in Figure 4 throughout the corresponding degrees of freedom. 

The above results are easily extended to the three-dimensional case. We now have 3n-2 
unstable modes to eliminate on a cube of n x n x n cubic Q,-Po elements. If we assume that the 
mesh is divided into a 2 x 2 x 2 macro-element (Figure 5), four modes have to be eliminated. The 
first mode of Figure 5 is the only genuine 3D mode while the other three are symmetries of 2D 
modes. 

(d) Velocity nodes (b) 42.M (c) 43.M 

Figure 4. Degrees of freedom of the Q1-P, element 
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Now we have a stable element, leading to an O(h) convergence, which is isomorphic to the 
Q2-P1 element, thus implying almost the same cost. In order to reduce the cost to the level of the 
standard Q,-Po element, we will iteratively correct the computed pressure from the Q,-Po 
element in order to insure that the pressure stays in the right space. This is achieved by projecting, 
at each iteration, the pressure on the space generated by the degrees of freedom of 0,. 

Before presenting our algorithm, it may be worth showing how the above construction is related 
to the convergence of the standard Q,-Po element. In fact, we recall that according to the results of 
Johnson and Pitkaranta4 it is possible to prove convergence of the Q,-Po element on a regular 
mesh. More precisely, what can be obtained is an error estimate on JJu-uL II and I) p - f i h l l  with 
fih=P@,ph. This result has been extended by Pitkaranta and Stenberg' to the case of a general 
mesh formed by a 4 x 4 regularly partitioned macro-element (Figure 6). 

However, no result is known (up to now) for a completely general mesh. A proof of the results 
quoted above can also be found in Reference 2. 

4. TWO ITERATIVE IMPLEMENTATIONS OF THE Q1-Fo ELEMENT 

The finite dimensional problem (5), (6) can be conveniently rewritten as (with subscript h and 'bold' 
notation dropped) 

Au + B'p = f ,  (1 1)  

Bu = g, (12) 
where AEP(IW~,IW~), BEP((IW~,IW~), U E I W ~ ,  g E R M  and p€IWM. 

augmented Lagrangian:' 
A basic technique used to solve such a problem is Uzawa's method applied to the following 

p,(u ,  4) = $(Au,u) - (f,4 + (q& - 9) + (r/2)lBu - g12, (13) 
which can be written as follows. 

Uzawa's method 

Let p o  E RM be chosen arbitrarily, say p o  =O; we construct p"' and u" from p" by induction as 

~ ~ ( U " ~ p n ) < ~ , . ( u , p n ) ,  U"E vh, vh, (14) 

p"+ ' =p" +p(Bu"- g), O <  p < 2r, (15) 

( A  + rB'B)u" + B'p" -f+ rB'g. (16) 

We note that (14) is equivalent to 

A complete analysis of this algorithm can be found in Reference 9, where the choice of r is also 
extensively discussed. 

Figure 6. A typical 4 x 4 macro-element 
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Before introducing our new method we recall an algorithm based on the saddle point technique 
to implement the Ql-Po. This was previously discussed in Reference 10. Here we consider Pp = 0 
as a new constraint on the system (l l) ,  (12) and we consider the following Lagrangian. 

-4 u, 491) = )(4 4 - ( X  4 + (4, Bu - 9 )  + ( U P  1. 
To find a saddle point of& we apply the classical Uzawa algorithm: 

let 1' E RM be chosen arbitrarily; 

1" being known, solve for u", p", 

infsup&(u, 4, A"); 
v q  

then update the dual variable 1 by I"' = 1" + pPp". 

Using a conjugate gradient method to implement the above algorithm, we find the following. 

Conjugate gradient algorithm 

1. Choose 1' arbitraily, possibly 0. 
2. 1' being given, solve the following Stokes problem: 

Au' + S'p' =A 
Bu' = 1'. 

3. p" being given, solve the following Stokes problem: 

Aw" + B'z" = 0, 

Bw" = Pp". 

4. Compute 

5. Update the new descent directions by 

4:' = w" +8"& 
d* --z +B"4:, 
&+ = Pp" + p"&. 

n + l -  n 

6. Compute 

7. Update the variables by 
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This algorithm has proved to work well (see Reference 10) and the next section) and will serve as 
a basis to compare the next algorithm to be described, namely the prorojected Uzawa algorithm. 
To introduce this new algorithm we recall the genuine algorithm based on the direct, and costly, 
use of the Q1-P, element. 

Working directly in the space &h can be viewed as working with the following Lagrangian and 
the associated Uzawa algorithm: 

yr(u> q ) = t ( A v ,  u ) - ( S ,  0)+(4 , (1 - -P) (Bu-g) )+( r /2 )  t ( I  -P)(Bu-g) 1 2 ,  (17) 

where P :  and (I - P): Q,,--.&, are the projection operators defined in Section 3. This would 
imply an assembly on the macro-elements which dramatically increases the bandwidth of the 
system to be solved. To avoid this problem we will make use of the approximation 

( I  - P)Bu" z Bu" - PBu"- ', (18) 

which enables us to write Uzawa's algorithm in the following weaker form. 

Projected Uzawa method 

Let u-  E ?h and p o  E &h be chosen arbitrarily; 
given u"-' and p", we find U" and p"+' by solving 

( A  + rB'B)u" - rB'PBu"- ' + B'p" =f+ rB'(I - P)g,  (19) 

(20) p"+ ' = p" + p ( I  - P)(Bu" - g ), 0 < p < 2r. 

Before illustrating the use of this algorithm numerically, we need to check the validity of 
hypothesis (18). In fact, we prove the convergence of algorithm (19), (20). 

Theorem 1 

For O < p < 2 r  and for all U-'E ?h, p 0 € Q h  we have 

I u" - u 1 +o, 
I P"l G M , ,  

I PBu" I 6 MZ, 

I( I - P)Bu" - ( I  - P)Bu 140, 

I p" + 1 - p"I +o, 
(PBu" + -- PBu" 1 +o. 0 

Prooj Let ( u , p )  be a saddle point of9r.  This point is characterized by 

( A  + rB'B)u - rB'PBu + B'p -j+ rB'(I - P)g, 

( I  - P)Bu = g o p  = p  + p(1- P)(Bu - 9). 

(21) 

(22) 

( A  +~B'B)U"-~B 'PB~"-~ '+B '~"=O,  (23) 

(24) 

Let us introduce U"=U"-U, p"=p"-p .  By subtracting (21) from (19) and (22) from (20) we find 

pn+ ' =p" + p( I - P)BU". 

Then, multiplying (24) by p"+ ' and (23) by U" we deduce 

1 1 1 - I P " + '  l 2  ---IP"lZ +---Ip"+ ' -p"12 - ( ( I  -P)BU", p"+ +' - p")  - ( ( I  - P)BU", p") = 0, (25) 
2P 2P 2P 



BILINEAR VELOCITY-CONSTANT PRESSURE ELEMENT 133 

As operators, P and ( I - P )  are orthogonal, so we can write 

( ( I  - P)BU", BU") = l(1- P)BUn 1 2 ,  
( PBu" - PBG" - ', BG") = ( PBu" - PBG" - ', PBU") 

= *1pBU"(2 - i(PB$"" 1 2 + 3 1 PBu" - PBU" - 1 2 ,  

(p", BG")=(p",  (I-P)BU"). 

Substituting relations (27) in (25), (26) and adding the last two we get 

(AG",U") + r I( I - P)Bii" 1' + - IPBU" 1' - 1 PBU"- 1' + I PBU" - PBB"-' 1' r r 
2 2 

Using the estimate 

and the ellipticity of A we deduce from (28) that 

r r r 
2 2 2 

1 ( I  - P)BU" 1' + - I P B U "  1' - - IPBu" - 1' + - 1 PBU" - PBU" - I 

Finally, adding the N equations of type (29) we get 

Choosing 0 < p < E < 2r, the left hand part of (30) is a monotonic, increasing, bounded sequence, 
hence convergent. As each sum has to be convergent, the terms Jiin)2, I(I -P)BU"j2, 
/PBU"-PBii"-'12 and Jp"+l  -p"l have to converge to zero. This completes the proof. 

An improved algorithm comes from the following observation: Owing to the explicit form of the 
term ( I - P ) B u  (see equation (18), the first iteration of the algorithm will force PBu to become 
small, and since PBu is the feedback control on the oscillations, the smaller its value the smaller the 
correction. The new 'relaxed' form of the projected Uzawa algorithm is 

let u -  ' E p,, and po  E Q^h be chosen arbitrarily; 
then let do = PBu- '; 
given p" and A", we find u", p"" and An+' by solving 

( A  + rB'B)Su" =f- Au"- - rB'(Bu"-l -g) + rB' A" -B'p", 

un=un-1 +Sun, 

p" + ' = p" + p( I - P)(Bu" - g), 0 < p < 2r, 



134 M. FORTIN AND S. BOIVIN 

A"+ =A"+ p(r --P)(PBU"+' --A"). (34) 

In practice, j3 = 2 appeared to be a good choice. 
Convergence of this algorithm can be proved along the same lines as in Theorem 1. 

5. NUMERICAL RESULTS 

The conjugate gradient and the modified Uzawa algorithms presented in the previous sections 
were both introduced in a code solving the Stokes problem by a penalty method and using the 
Q,-Po element. Projection operators are defined as before. We suppose that the macro-element 
mesh has been already constructed, possibly by mesh refinement. Numericals simulations on the 
driven cavity problem and a flow in a distorted convergent show that these methods are efficient 
and provide a good approximation of velocities as well as pressure. 

All our results were compared with reference solutions obtained from a well tested finite element 
code using the Q2-P,  element. The graphical results presented here came from any of the 
stabilization methods we have presented since all the results have error less then ljl000. 

Perturbated driven cavity 

The mesh of a typical 10 x 10 element flow-through 'cavity was perturbated by displacing an 
internal node by in each direction, producing a crude checkerboard. After a few iterations of 
the new algorithm, the checkerboard modes had disappeared. The result differed only slightly 
from the reference result, i.e. that obtained with the Q2-P1 element, which is free of any spurious 
mode. 

We obtained similar results for the much more difficult case of the containedflow in a cavity, that is 
with zero velocities at each corner node. This problem is well known to be illposed on the original 
Q,-Po pressure space for the square cavity with an even number of elements on the driven side.3 
Using our algorithms, however, we were able to obtain a coherent solution in a few steps 
(Figures 7(a) and 7(b)). It must be noted that in this contained flow problem the velocity field is 
oscillating in the neighbourhood of the corners, even for the well posed, odd number of elements 
case. Our iteration not only provides a solution in the even and odd cases but the solution is a 
smooth one. 

Distorted convergent 

Another significant example is the distorted convergent of Figures 8(a) and 8(b). This can be 
taken as an (artificial) example of a mesh on which no convergence proof is available for the 
standard Q,-Po element and on which filtering of spurious modes is much harder than in the first 
case. A parabolic profile is imposed at the entrance and at the exit in such a way as to conserve the 
flow. Here again a crude checkerboard appears (Figure 8(a)). A few iterations of the new algorithm 
are enough to remove most of the checkerboard mode (Figure 8(b)). The result differs only slightly 
from the reference result which is free of any spurious mode. 

Velocities 

In the above cases the velocities after a few iterations differ only slightly from those obtained 
without filtering (Figure 10). This fact seems to be general on a fine mesh. However, for complex 
flow relative to the mesh the velocities computed with QI-Po can be different from those 
computed after filtering. 
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0.000c+00 

-0.30&+06 

(b) 

Figure 7. (a) Spurious and (b) filtered pressure in a contained flow cavity 

Other numerical experiments and convergence 

Rates of convergence of the factors I( PB(u"- u"- ' ) (I 41 and I( ( I  - P)Bun (1 for the projected 
Uzawa algorithm for the difficult contained flow problem in a cavity (Figure 11)  illustrate the 
difficulties associated with high values of r, but show also the efficiency of the method. 
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- 1 
0.98fk.+02 

-0.43 let02 

0.184C+O3 

-0.13oc+O2 

-0.527c+02 

p m i m  
Univ. h v a l  
31 ,an 89 MAX = 0.266e+O2MJN = -0.527e+02 I 

(b) 

Figure 8. (a) Spurious and (b) filtered pressure in a convergent 

Rates of convergence of the factor 1) Pp" 1) oo for the conjugate gradient algorithm for the difficult 
contained flow problem in a cavity and for the distorted convergent (Figure 12) illustrate the 
difficulties associated with large number of degrees of freedom, but show also the efficiency of the 
method. 
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' k d  J 
J '/ 

Univ. Lava1 
31 Jan 89 V u u . C  

Univ. lava1 I 31 Jan89 

(b) 

Figure 9. Contained flow in a cavity (a) before and (b) after filtering 

Various combinations of the above geometries and boundary conditions have been tested and 

Regularity of the partition within each macro-element seems to be unrelated to the convergence 
almost all showed similar convergence rates. 

of this algorithm. 
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Univ. Lava1 
31 Jan 89 VLLc.Ic 

' \\---- - \\--.----- ''--=I - -.. \---- 
Univ. Lava1 
31 Jan 89 

"IICUC 

I 

(b) 

Figure 10. Flow in a convergent (a) before and (b) after filtering 

6. CONCLUSIONS 

We have described a new method for filtering the pure and impure checkerboard mode which 
enables us to use properly the Q,-Po element. One of its advantages is that it can easily be added 
to an existing code without increasing the number of degrees of freedom or the bandwidth of the 
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Figure 11.  Convergence rates of the projected Uzawa algorithm 

system. This method has been shown to perform well in 2D and can be generalized in 3D. In that 
case four modes have to be filtered on each macro-cube of eight hexahedral elements. Although 
developed for the Q1-Po element and the Stokes problem, it can be modified for other pressure- 
unstable elements and for non-linear problems, where it can be imbedded in other iterative 
procedures. 
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cavity n=30 

cavity n=20 
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Figure 12. Convergence rates of the conjugate gradient algorithm 
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